Theoretical and experimental study of the pH-dependent interaction of amino acids and MFI-type zeolite
نویسندگان
چکیده
The separation and purification of peptides and proteins using chromatography can make up more than half the amount of the total purification costs of a biotechnological process [1]. The development of cost-efficient processes still suffers from the lack of understanding on a molecular level of adsorption mechanisms of biomolecules on materials surfaces. To explore the power of computer science in supporting experimentally based process development, we applied a combined force field approach with subsequent Density Functional Theory (DFT) calculations. As a first step, we examined the adsorption of the amino acids glycine (gly), l-alanine (ala) and l-lysine (lys) on MFI-type zeolite (MFI). Experimental data from adsorption isotherms and Isothermal Titration Calorimetry (ITC) have proved the adsorption to be strongly pH-dependent. Therefore, we applied the amino acids in their protonated and neutral state in order to simulate low and medium pH values in our computational study. A T33 cluster containing all potential binding regions was used as a model of MFI. Initial geometries for DFT calculations were prepared with force field methods in order to speed up the search in conformational space. Low energy adsorption sites were determined using Adsorption Locator and Forcite modules of Materials Studio 6.0 (Accelrys Inc.). Subsequently, the structures were optimized with DMol code (Accelrys Inc.) using the generalized-gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the double numerical plus polarization (DNP) basis set. Calculated energies strongly mirror the adsorption affinities derived from experimental adsorption isotherms: (lyslow_pH >> ((ala > gly)low_pH ~ lysmedium_pH)) >> (ala > gly)medium_pH. Furthermore, calculated adsorption energy ratios between protonated amino acids agree very well with the enthalpy ratios derived from low pH ITC experiments: ([ala:gly] = 1.12exp = 1.14calc), ([lys:ala] = 1.72 exp = 1.75 calc), ([lys:gly] = 1.92exp = 1.97calc). Additionally, the adsorption mechanisms of neutral and protonated amino acids were found to be qualitatively different. Neutral amino acids bind via neutral amino group and proton transfer to the active site in zeolite, whereas protonated amino acids bind via carboxyl group. These results illustrate that a judiciously designed combination of atomistic modeling methods can be used as a reliable first step in the design of cost-efficient industrial processes.
منابع مشابه
Adsorption of amino acids on MFI-type zeolite: DFT calculations and experimental results
Adsorption is a common unit operation in separation and purification of biotechnological products where chromatography steps can make up more than half the amount of the total purification costs [1]. The molecular mechanisms of adsorption are still not understood in detail. Further understanding of interactions between adsorbent surfaces and adsorptives could help to facilitate process design i...
متن کاملCa-modified MFI zeolite: A study on its synthesis, characterization and catalytic activity
Using hydrothermal synthesis process a series of Mobil Five (MFI) zeolites were synthesized with silica to alumina ratio (SAR) of 50, 100 and 200. The synthesized MFI zeolites were used to exchange with 0.5%, 1.0% and 2.0% Ca(NO3)2 solutions for modification of MFI zeolites to Ca-MFI zeolite. The formation of MFI zeolite phases was identified by XRD and FT-IR analysis. TGA...
متن کاملTheoretical study of the solvent effects on the thermodynamic functions of Alanine and Valine Amino Acids
Using Gaussian 03, software the thermodynamic functions such as Gibbs free energy, G, Enthalpy, H, and Entropy, S, of Alanine and Valine amino acids were theoretically studied at different solvents. First, the Density Functional Theory (B3LYP) level with 3-21G, 6-31G and 6-31+G basis sets were employed to optimization of isolated Alanine and Valine amino acids in the gas phase. Moreover, Vib...
متن کاملPerformance of 2-Amino Tetraphenyl Porphyrin as Stationary Phase in RP-HPLC of Amino Acids
The search for new stationary phases has been one of the predominant concerns in high performance liquid chromatography (HPLC) in order to achieve better resolutions, longer column lives, and reduce the time of analysis. A chromatographic packing for separation of underivatized amino acids (AAs) were prepared by dynamically coating 2-amino tetraphenyl prophyrin (atpp) on a C-18 reversed-pha...
متن کاملSynthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کامل